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LETTER TO THE EDITOR 

Accurate determination of the critical line of the square Ising 
antiferromagnet in a field 

Henk W J Blote'r and Xue-Ning WuS$ 
t Laboratorium voor Technische Natuurkunde, PO Box 5046, 2600 GA Delft, The 
Netherlands 
$ Department of Physics, Northeastern University, Boston, MA 02115, USA 

Received 22 March 1990 

Abstract. Several points on the critical line of the simple quadratic antiferromagnetic Ising 
model in a field are located with high precision. This is accomplished by means of finite-size 
scaling of the magnetic correlation length of n x03 strips. The latter quantities were 
determined by means of the transfer matrix method for strip widths up to n = 20. An 
expression, possibly with the exact form, is constructed which reproduces the critical line 
with an accuracy to the order of lo-''. 

Until recently, the location of the critical line of two-dimensional king antiferromagnets 
in a field has mostly been restricted to numerical methods [l-41. An exception is the 
'super-exchange model' solved by Fisher [5]; in that rather special case the field acts 
only on part of the spins and can be transformed away with the decoration transforma- 
tion. A related example was recently given by Giacomini [6]. An interesting conjecture 
was devised by Muller-Hartmann and Zittartz [7] for the critical line of the model on 
the square lattice; however, it was later shown not to be exact [3]. 

A new development is based on the analytic approach. The principle works as 
follows. The antiferromagnetic Ising model, with only nearest-neighbour interactions 
and a field, is generalised to a vertex model. By introducing a gauge variable into the 
weak-graph expansion by Wegner [8], Wu [9] has shown that the partition function 
of the vertex model is invariant under continuous O(2) transformations acting on the 
vertex weights. Therefore, it is required that also the critical manifold of the vertex 
model is invariant under that transformation. This requirement imposes restrictions 
on the shape of the critical surface. These restrictions can be augmented by the 
assumption that the critical surface corresponds with the zeros of a homogenous 
polynomial in the vertex weights [9-121. When supplemented with additional knowl- 
edge, e.g. the exactly known zero-field critical point and numerical results for non-zero 
fields in the Ising subspace, the location of the critical surface can be further restricted. 
Finally, the assumption that the critical surface has the simplest form allowed by the 
gauge invariance and the additional data may be used to determine the Ising critical 
line uniquely (i.e. if we neglect the inaccuracy of the numerical results). This was 
recently achieved for the Ising model on the honeycomb lattice [ 131. In that case, the 
availability of highly accurate numerical data [14] was crucial: in the first instance, 
an analytic expression for the critical line was constructed that fitted the numerical 
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results up to deviations of the order of Since the numerical inaccuracy was 
smaller, it could nevertheless be concluded that the expression was not the exact one: 
the deviations were significant in spite of the fact that they were very small. The 
next-simplest expression allowed by the gauge invariance of the critical manifold was 
found fully consistent with the numerical precision of the order of in the critical 
points. 

This technique was also applied to the Ising model on the square lattice by Wu 
and Wu [15], leading to an expression for the critical line that might have the exact 
form. This expression contains constants with a finite numerical accuracy, reflecting 
the numerical inaccuracies of a few times 

One of the goals of the present work is to reduce the numerical inaccuracy of the 
critical line (or a number of points on the critical line) of the square Ising antiferromag- 
net to a level comparable to that of the honeycomb model. This may not only lead to 
a more accurate determination of the aforementioned constants, but also enable a 
more stringent test of the form of the expression for the critical line proposed in [ 151. 
This task was accomplished by means of transfer-matrix calculations and finite-size 
scaling (for reviews see [16]) of the correlation length. 

To this purpose we consider the Ising model on an n x 00 strip on the square lattice 
with periodic boundaries in the finite direction, and with a reduced Hamiltonian 

in the critical points derived in [4]. 

The first sum is over all nearest-neighbour pairs. The associated coupling (interaction 
divided by k T )  K is negative. Also the reduced magnetic field H contains a factor 
I /  kT. The magnetic correlation length 6, in the length direction of the strip follows 
from the two largest (in absolute value) eigenvalues A I  and A 2  of the transfer matrix: 

5n'(K, H )  = l og I~1 /~* l .  (2) 

At the critical point, the magnetic correlation length is expected to have the following 
finite-size dependence 

n&'( K ,  H) = n / 4  (3) 

for asymptotically large n, in accordance with Ising universality [ 171. Thus, the critical 
coupling K , ( H )  can be estimated by solving numerically for K in (3). These solutions, 
which are denoted Kl,,, can be subjected to a number of iterated fits described, e.g. 
in [ 141, yielding K,,,,  i = 2,3, . . . . This procedure greatly accelerates the convergence 
to K , ( H )  with increasing n. 

For the determination of the correlation lengths, two different transfer matrices 
were used: (i)  with the transfer direction (i.e. the length direction of the strip) parallel 
to a set of lattice edges, and (ii) with the transfer direction rotated by an angle of 7r/4. 
Technical details of the transfer matrix calculations can be found in [14], which 
describes the construction of transfer matrices for two different directions on the 
honeycomb lattice. Firstly, the square lattice can be obtained by adding extra bonds 
into the brick representation of the honeycomb lattice. Thus, the first transfer matrix 
for the square lattice is constructed by adding a set of horizontal couplings into the 
first transfer matrix of [14]. Thereby the periodicity in the transfer direction reduces 
to one. Secondly, the square lattice can be obtained by contracting all bonds having 
a specified direction on the honeycomb lattice. Thus, the second transfer matrix for 
the square lattice is obtained from the second transfer matrix constructed in [14] by 
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making the vertical bonds ferromagnetic and infinitely strong (and dividing out the 
infinite constant in the appropriate Boltzmann weights). The transfer matrix thus 
obtained is symmetric, so that the spin inversion redefinition described in [14] is 
unnecessary. 

Using the first transfer matrix construction, a computer program was written for 
the calculation of the magnetic correlation length (2). We have used finite size 
parameters n = 2, 4, . . . ,20. Odd system sizes were ignored because the associated 
frustration occurring in antiferromagnetic systems leads to a scaling behaviour that is 
different from that expressed by (3). Solutions of (3) as described in [14] were thus 
obtained for several values of H. Iterated fits up to K4,n( H) were obtained from these 
solutions. They show a rapid apparent convergence. Best estimates of the critical 
points are based on K , , , ( H )  and I G f l ( H ) ,  and are shown in table 1. Results were 
also obtained in the limit K + -CO, by solving (3) for p = -2H - 8 K ,  which remains 
finite. This quantity is the chemical potential of a hard-square lattice gas [3]. The 
final result is included in table 1. 

Table 1. Best estimates of critical points 1, of the square antiferromagnetic Ising model in 
a field H. The temperature-like parameter I stands for the nearest-neighbour coupling K 
or for the chemical potential of a hard-square lattice gas. The columns under tc, ,  and 
ic,2 were obtained from the first- and the second-transfer matrix mentioned in the text 
respectively. Estimated numerical inaccuracies in the last decimal places are shown between 
parentheses. 

c . 2  

0 
0.25 
0.5 
0.75 
1 .O 
1.25 
1.5 
1.75 
2.0 
2.5 
3.0 
4.0 
CO 

K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
K 
P 

-0.440 686 795 (2)  
-0.446 044 361 ( 3 )  
-0.461 733 921 ( 3 )  
-0.486 729 978 (3) 
-0.519 652 443 ( 3 )  
-0.559 055 720 ( 3 )  
-0.603 617 782 (3) 
-0.652 221 358 (3)  
-0.703 964 205 (3)  
-0.814 184087 ( 3 )  
-0.930 301 817 ( 3 )  
-1.171 715  306 (5)  

1.334 015 10 (5)  

-0.440 686 7935 (2)  
-0.446 044 3601 (2)  
-0.461 733 9203 (2)  
-0.486 729 9778 (2)  
-0.519 652 4427 (2)  
-0.559 055 7206 (2)  
-0.603 617 7818 (2) 
-0.652 221 3579 (2) 
-0.703 964 2060 (2)  
-0.814 1840877 (2) 
-0.930301 8177 (2)  
-1.171 715 3059 (2)  

1.334015 1004(8) 

Using the second transfer matrix, (3) was similarly solved for finite sizes 2,3, . . , , 19. 
No odd-even alternation occurs in this case. Best estimates of the critical couplings 
were based on 

During the fitting procedures, we observed that the differences &(H) - K , , ( H ) ,  
for m > n, were usually at most of the same order of magnitude as the differences 
K 4 , f l ( H )  - &,,-,(H). Thus, the latter difference, taken for the largest available value 
of n, served as the basis of our estimation of the numerical uncertainties in the data 
shown in table 1. Although the largest system size for the first transfer matrix is larger, 
this effect is outweighed by the larger number of system sizes in the case of the second 
transfer matrix. We observe that the data in table 1 are consistent with each other, 
and with existing results [ 1-41, and with the exact value K,(O) = f log(1 +a) = 
0.440686793509771513. . . .  

; they are also shown in table 1. 
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In order to obtain a closed-form expression describing the whole critical line of 
the square Ising antiferromagnet, we have repeated the analysis of [15] on the basis 
of the new numerical results. Thus we have fitted the unknowns in the invariant 
polynomial of degree 4 (f4+ as defined in [15]), using the data in the last column of 
table 1. Unfortunately, we found that the polynomial of degree 4 is unable to reproduce 
the critical points with an accuracy better than about Thus the polynomial of 
degree 4 cannot be the exact expression for the critical line. 

The next-simplest candidate is the polynomial of degree 6. Using the notation and 
definitions of [15], it is given by 

f6+ = cl I(: + CZI; + c3Ii 

+ c4I:IZ f c,l:I:+ c6I:Z3 + C71:I: + c81:I3 + cgZ2Z; + cloZ:Z213 (4) 

where the I, are known fundamental invariant polynomials given in [ 151; they depend 
only on K and H. The ci are the unknowns that remain to be determined (in fact 
there are only nine unknowns, because only the ratios of the c, matter). The fundamental 
invariants Z4 and Z5 do not appear in (4); they were eliminated using the relations 
Z 4 = - f l ~ + f l l 1 2 + Z , Z 3  and 64Z:= 1 2 Z i - Z z .  

In addition to the data presented in table 1, also the curvature of the critical line 
at zero field is known with a high precision. In the limit H + 0, its behaviour is 

( 5 )  

The constant U can be determined by substituting the highly accurate number B =  
0.193 595 186 268 2647. .  . , which was defined and determined by Kong et a1 [18,19], 
for D in equation (24) of a paper by Kaufman [20]. This yields U =  

0.038 012 325 934 4205 . . . . 
Each of the K , ( H )  data points including the exact value at H = 0, as well as the 

constant U, leads to a linear equation (f6+ = 0) that may serve to solve for the c,. In 
order to suppress loss of accuracy during the solution of a resulting set of linear 
equations, we have used quadruple precision in this part of the calculation. Since the 
number of data points exceeds the number of unknowns, the remaining data points 
could be used to check the accuracy of the resulting expression for the critical line 
after solving for the ci. The solutions thus obtained are still dependent on the choice 

K,( H) -: log( 1 +a) - 2uH2/log( 1 +a). 

Table 2. Results for the coefficients c, as solved from the set of linear equations given by 
f6+ = 0 using the data described in the text. This set of coefficients describes the critical 
line K,( H) with an accuracy of the order of lo-''. 

I "i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
-6.237 774 177 232 442 x TO-' 
-4.388 465 499 901 184 x 
-4.719 220 855 085 813 x lo-' 

-9.463 046 463 634 868 x lo-' 
1.241 878 555 056 222 x lo-* 

5.644 026 087 337 113 x lo-' 
4.221 148 633 657 529x 
2.681 027 308 907 968 x 

-9.331 064 823 834 851 x lo-* 
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of the data points used to solve the linear equations. The constants ci as obtained 
from one of the resulting fits are shown in table 2. Once the ci are known, one can 
use the equation f6+ = 0 to solve for K , ( H ) .  For details see [ls]. This solution 
reproduces the zero-field critical point and the constant U with a precision of the order 
of (i.e. consistent with the machine precision), and the remaining data points 
within a margin of lo-'', well within the estimated errors quoted in table 1. Thus, the 
description of the critical line by the invariant polynomial f6+ is consistent with all 
available data, and therefore & + = O  may be considered a candidate for the exact 
formula for the critical line Ising antiferromagnet on the square lattice. 

We are much indebted to Professor F Y Wu for introducing us to gauge transformations 
of the vertex weights and related subjects, for many useful discussions, and hospitality 
extended to one of us (HB) at Northeastern University. We thank Professor J H H 
Perk for informing us about the accurate determination of the constant U. This work 
is supported in part by the NSF Grant No DMR-8702596 and the Nato Grant No 
198/84. 

References 

[ I ]  Bienenstock A and Lewis J 1967 Phys. Rev. 160 393 
[2] Rapaport D C and Domb C 1971 1. Phys. C: Solid State Phys. 4 2684 
[3] Baxter R J, Enting I G and Tsang S K 1980 J. Stat. Phys. 22 465 
[4] Blote H W J and den Nijs M P M 1988 Phys. Rev. B 37 1766 
[5] Fisher M E 1960 Proc. R. Soc. A 254 66 
[6] Giacomini H 1988 J. Phys. A: Math. Gen. 21 L31 
[7] Muller-Hartmann E and Zittartz J 1977 Z. Phys. B 27 261 
[8] Wegner F 1973 Physica 68 570 
[9] Wu F Y 1974 J. Math. Phys. N Y  15 687 

[ I O ]  Wu X N and Wu F Y 1988 J. Stat. Phys. 90 41 
[ I l l  Gwa L H 1989 Phys. Rev. Lett. 63 1440 
[I21 Perk J H H, Wu F Y and Wu X N 1989 Algebraic Invariants of O(2) Gauge Transformations preprint 
E131 Wu F Y, Wu X N and Blote H W J 1989 Phys. Rev. Lett. 62 2773 
[14] Blote H W J, Wu F Y and Wu X N 1990 Inr. J. Mod. Phys. B 4 619 
[I51 Wu X N and Wu F Y 1989 Phys. Leu. 144A 123 
[ 161 Nightingale M P 1982 J. Appl. Phys. 53 7927 

Barber M N 1983 Phase Transitions and Critical Phenomena vol8, ed Domb C and Lebowitz J L (New 
York: Academic) 

[I71 Nightingale M P and Blote H W J 1983 J. Phys. A: Math. Gen. 16 L657 
[I81 Kong X P, Au-Yang H and Perk J H H 1986 Phys. Lett. 118A 336 
[I91 Kong X P, Au-Yang H and Perk J H H 1987 Prog. Theor. Phys. 77 514 
[20] Kaufman M 1987 Phys. Rev. B 36 3697 


